(80). Li, P., Liang, W., Zhou, Y., Yi, Y., He, C., Shi, Q., & He, D.* (2023). Hypoxia diversifies molecular composition of dissolved organic matter and enhances preservation of terrestrial organic carbon in the Yangtze River Estuary. Science of The Total Environment, 906, 167661.

(79). Chen, Z., Yi, Y.*, Zhang, H., Li, P., Wang, Y., Yan, Z., Wang, K., He, C., Shi, Q., & He, D.* (2023). Differences in dissolved organic matter molecular composition along two plume trajectories from the Yangtze River Estuary to the East China Sea. ACS Environmental Au, Accepted and in press.

(78). Li, J., Wu, Y.*, Jiang, Z., Liu, S., Ren, Y., Yang, J., Song, X., Huang, X.*, He, D. (2023). Terrestrial and biological activities shaped the fate of dissolved organic nitrogen in a subtropical river-dominated estuary and adjacent coastal area. Journal of Geophysical Research – Oceans, Accepted and in press.

(77). Liang, W., Liu, T., Wang, Y., Jiao, J. J., Gan, J., & He, D.* (2023). Spatiotemporal-aware machine learning approaches for dissolved oxygen prediction in coastal waters. Science of The Total Environment905, 167138.

(76). Zhao, C., Hou, Y., Wang, Y., Li, P., He, C., Shi, Q., … & He, D.* (2023). Unraveling the photochemical reactivity of dissolved organic matter in the Yangtze River estuary: Integrating incubations with field observations. Water Research245, 120638.

(75) Liang, W., Chen, X., Zhao, C., Li, L.*, & He, D.* (2023). Seasonal changes of dissolved organic matter chemistry and its linkage with greenhouse gas emissions in saltmarsh surface water and porewater interactions. Water Research, 120582. https://www.sciencedirect.com/science/article/pii/S0043135423010229

(74) Zhao, C., Zhang, H., Li, P., Yi, Y., Zhou, Y., Wang, Y., … & He, D.* (2023). Dissolved organic matter cycling revealed from the molecular level in three coastal bays of China. Science of The Total Environment, 166843. https://www.sciencedirect.com/science/article/pii/S0048969723054682

(73) Wang, H., Zhang, Q., Li, X., Yi, Y., Wang, Q., Gao, L., Wang, J., He, D.* & Li, M.* (2023). Surface microrelief induced by tillage management alters the pathway and composition of dissolved organic matter exports from soils to runoff during rainfall. Water Research, 120554. https://www.sciencedirect.com/science/article/pii/S0043135423009946

(72). Yan, Z., Xin, Y.*, Zhong, X., Yi, Y., Li, P., Wang, Y., Zhou, Y., Zhou, Y., He, C., Shi, Q., He, D.* (2023). Dissolved organic nitrogen cycling revealed at the molecular level in the Bohai and Yellow Sea. Water Research, 120446. https://www.sciencedirect.com/science/article/pii/S0043135423008862.

(71). Li, S.L.*, Zhang, H., Yi, Y.B.*, Zhang, Y.T., Qi, Y.L., Mostofa, K.M.G., Guo, L.D., He, D., Fu, P.Q., & Liu, C.Q. (2023). The potential impacts of climate and anthropogenic-induced changes on DOM dynamics among the major Chinese Rivers.Geography and Sustainability.https://doi.org/10.1016/j.geosus.2023.07.003

(70).Liu, Z., Wang, Y.*, Liu, T.*, Zhang, L., Li, W., Liao, J., He, D. (2023). Semantic-enhanced Contrastive Learning for Session-based Recommendation. Knowledge-Based Systems, accepted and in press.

(69). He, C., Yi, Y., He, D., Cai, R., Chen, C., & Shi, Q.* (2023). Molecular composition of dissolved organic matter across diverse ecosystems: Preliminary implications for biogeochemical cycling. Journal of Environmental Management, 344, 118559.

(68). Nai, H., Zhong, J.*, Yi, Y., Lai, M., He, D., Dittmar, T., Liu, C.Q., Li, S.L., & Xu, S.*(2023). Anthropogenic Disturbance Stimulates the Export of Dissolved Organic Carbon to Rivers on the Tibetan Plateau. Environmental Science & Technology. https://pubs.acs.org/doi/10.1021/acs.est.3c01593

(67). Wang, Y., Luo, T., Chen, J., Zhan, Z.W., Song, Z., Xing, L.,& He, D.* (2023). Influence of salinity on hydrogen isotope fractionation of n-alkanes in mangrove leaves and surface sediments: A comparison across various geomorphological settings. Chemical Geology. https://doi.org/10.1016/j.chemgeo.2023.121589

(66). Yan, Q., Zhao, Y., Ma, R., Wang, B., Zhu, Z., Li, T., He, D., Hocart, C. H.; &Zhou, Y.*(2023). Capping the hydroxyl groups (-OH) of α-cellulose to reduce Hy-groscopicity for accurate 18O/16O measurement by EA/Py/IRMS. Talanta, 262, 124698.https://doi.org/10.1016/j.talanta.2023.124698

(65). Zhao, C., Zhou, Y., Wang, Y., Huang, W., He, C., Shi, Q.,& He, D.* (2023). Seasonal variations in dissolved organic matter chemistry in a eutrophic, semi-enclosed bay in Southeastern China: Implications for carbon cycling. Journal of Hydrology 622,129679. https://doi.org/10.1016/j.jhydrol.2023.129697

(64). Zhao, C., Xu, X., Chen, H., Wang, F., Li, P., He, C., Shi, Q., Yi, Y., Li, X., Li, S., &He, D.* (2023). Improved understanding of photochemical processing of dissolved organic matter by using machine learning approaches. Environmental Science & Technology. https://doi.org/10.1021/acs.est.3c00199.

(63). Yi, Y., He, C., Klaproth, K., Merder, J., Li, P., Qi, Y., Fu, P., Li, S., Dittmar, T., Shi, Q.*,& He, D.* (2023). Will various interpretation strategies of the same ultrahigh-resolution mass spectrometry data tell different biogeochemical stories? A first assessment based on natural aquatic dissolved organic matter. Limnology and Oceanography: Methods. doi: 10.1002/lom3.10548.

(62). Yi, Y., Liu, T.*, Merder, J., He, C., Bao, H., Li, P., Li, S., Shi, Q. & He, D.* (2023). Unraveling the Linkages between Molecular Abundance and Stable Carbon Isotope Ratio in Dissolved Organic Matter Using Machine Learning. Environmental Science & Technology. https://doi.org/10.1021/acs.est.3c00221

(61). Pan, Q., Hu, W., He, D., He, C*., Zhang, L., & Shi, Q. (2023). Machine-learning assisted molecular formula assignment to high-resolution mass spectrometry data of dissolved organic matter. Talanta, 259, 124484.https://doi.org/10.1016/j.talanta.2023.124484

(60) Chen, Y., Sui, W., Wang, J., He, D., Dong, L., &Wang, F.* (2023). Refractory humic-like dissolved organic matter fuels microbial communities in deep energy-limiting marine sediments. Science China Earth Sciences, Accepted.

(59) Wang, K., Fang, H.*, He, G., Huang, L., Cui, Z., Gao, Q., … & He, D. (2023). Optical and molecular diversity of dissolved organic matter in sediments of the Daning and Shennong tributaries of the Three Gorges Reservoir. Frontiers in Environmental Science. DOI:doi 10.3389/fenvs.2022.1112407.

(58) Hu, T., Luo, M.*, Qi, Y., He, D., Chen, L., Xu, Y., & Chen, D.* (2023). Molecular evidence for the production of labile, sulfur-bearing dissolved organic matter in the seep sediments of the South China Sea. Water Research, 233, 119732. https://doi.org/10.1016/j.watres.2023.119732.

(57) Wang, K., Pang, Y., Yi, Y., Yang, S., Wang, Y., He, C., Shi, Q., & He, D. *(2023) Response of dissolved organic matter chemistry to flood control of a large river reservoir during an extreme storm event. Water Research 230, 119565. https://www.sciencedirect.com/science/article/pii/S0043135423000015

(56).Liu, Z., Cai, R.*, Chen, Y., Zhuo, X., He, C., Zheng, Q., He, D., Shi, Q., &Jiao, N.* (2023). Direct production of bio-recalcitrant carboxyl-rich alicyclic molecules evidenced by a bacterium-induced steroid degradation experiment. Microbiology Spectrum, e04693-22. https://journals.asm.org/doi/full/10.1128/spectrum.04693-22.


(55). Lu, Y., Cao, J.*, Fu, J., Liu, L., Wu, Q., Yang, X., Yang, S., Cheng, S., Qiu, X., & He, D. (2022). Discovery of a Hadean xenocrystic zircon (4100 Ma) in the Cathaysia Block. Science Bulletin, 67(23), 2416-2419. https://www.sciencedirect.com/science/article/pii/S2095927322005138?via%3Dihub=

(54). Wang, Y. P., Luo, T., Zhou, X., Zhan, Z. W., Song, Z.*, & He, D. (2022). Inverse relationships between salinity and hydrogen isotope fractionation of n-alkanes in the Aegiceras corniculatum leaves and surface sediments from Zhanjiang mangrove estuary of China. Chemical Geology, 612, 121138. https://www.sciencedirect.com/science/article/pii/S0009254122004326

(53). Qi, Y., Xie, Q., Wang, J. J., He, D., Bao, H., Fu, Q. L., Su, S., Sheng, M., Li, S., Volmer, D., Wu, F., Jiang, G., Liu, C., & Fu, P.* (2022). Deciphering dissolved organic matter by Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS): from bulk to fractions and individuals. Carbon Research, 1(1), 1-22. https://link.springer.com/article/10.1007/s44246-022-00002-8

(52). Cui, X.*, Mucci, A., Bianchi, T. S., He, D., Vaughn, D., Williams, E. K., Wang, C., Smeaton, C., Koziorowska-Makuch, K., Faust, J., Plante, A., & Rosenheim, B. E. (2022). Global fjords as transitory reservoirs of labile organic carbon modulated by organo-mineral interactions. Science Advances, 8(46), eadd0610. https://www.science.org/doi/full/10.1126/sciadv.add0610

(51). Liu, J.*, Zhao, J., He, D., Huang, X., Jiang, C., Yan, H., Lin, G., & An, Z. (2022). Effects of plant types on terrestrial leaf wax long-chain n-alkane biomarkers: Implications and paleoapplications. Earth-Science Reviews, 104248. https://www.sciencedirect.com/science/article/pii/S0012825222003324

(50). Yi, Y., Li, S. L.*, Zhong, J., Wang, W., Chen, S., Bao, H., & He, D. (2022). The influence of the deep subtropical reservoir on the karstic riverine carbon cycle and its regulatory factors: Insights from the seasonal and hydrological changes. Water Research, 226, 119267. https://www.sciencedirect.com/science/article/pii/S004313542201212X

(49). Wen, Z., Shang, Y., Song, K.*, Liu, G., Hou, J., Lyu, L., Tao, H., Li, S., He, C., Shi, Q., & He, D. (2022). Composition of dissolved organic matter (DOM) in lakes responds to the trophic state and phytoplankton community succession. Water Research, 224, 119073. https://www.sciencedirect.com/science/article/pii/S0043135422010193

(48). He, C., He, D.*, Chen, C., & Shi, Q.* (2022). Application of Fourier transform ion cyclotron resonance mass spectrometry in molecular characterization of dissolved organic matter. Science China Earth Sciences, 1-18. https://link.springer.com/article/10.1007/s11430-021-9954-0

(47). Jiang, X., Liu, D.*, Li, Q., Tian, P., Wu, Y., Li, S., … & He, D. (2022). Connecting the Light Absorption of Atmospheric Organic Aerosols with Oxidation State and Polarity. Environmental Science & Technology, 56(18), 12873-12885. https://pubs.acs.org/doi/full/10.1021/acs.est.2c02202

(46). Shang, Y., Wen, Z., Song, K.*, Liu, G., Lai, F., Lyu, L., Li, S., Tao, H., Hou, J., Fang, C., He, C., Shi, Q., & He, D.* (2022). Natural versus anthropogenic controls on the dissolved organic matter chemistry in lakes across China: Insights from optical and molecular level analyses. Water Research, 221, 118779. https://www.sciencedirect.com/science/article/pii/S0043135422007321

(45). Sun, X., Li, P.*, Zhou, Y., He, C., Cao, F., Wang, Y., Shi, Q., & He, D.* (2022). Linkages Between Optical and Molecular Signatures of Dissolved Organic Matter Along the Yangtze River Estuary-to-East China Sea Continuum. Frontiers in Marine Science, 9, 933561. https://www.frontiersin.org/articles/10.3389/fmars.2022.933561/full

(44). Zhou, Y., Zhao, C., He, C., Li, P., Wang, Y., Pang, Y., Shi, Q., & He, D.* (2022). Characterization of dissolved organic matter processing between surface sediment porewater and overlying bottom water in the Yangtze River Estuary. Water Research, 215, 118260. https://www.sciencedirect.com/science/article/pii/S0043135422002238

(43). He, D.*, Ladd, S. N., Park, J., Sachs, J. P., Simoneit, B. R., Smoak, J. M., & Jaffé, R. (2022). Carbon and hydrogen isotopes of taraxerol in mangrove leaves and sediment cores: Implications for paleo-reconstructions. Geochimica et Cosmochimica Acta, 324, 262-279. https://www.sciencedirect.com/science/article/pii/S0016703722000916

(42). He, D.*, Li, P., He, C., Wang, Y., & Shi, Q. (2022). Eutrophication and watershed characteristics shape changes in dissolved organic matter chemistry along two river-estuarine transects. Water Research, 214, 118196. https://www.sciencedirect.com/science/article/pii/S0043135422001592

(41). Zhang, S., Li, X., He, D., Zhang, D., Zhao, Z., Si, H., & Wang, F.* (2022). Per-and poly-fluoroalkyl substances in sediments from the water-level-fluctuation zone of the Three Gorges Reservoir, China: Contamination characteristics, source apportionment, and mass inventory and loadings. Environmental Pollution, 299, 118895. https://www.sciencedirect.com/science/article/pii/S0269749122001099

(40). Wang, Y.*, Chen, H. H., Tang, R., He, D., Lee, Z., Xue, H., Wells, M., Boss, E., & Chai, F. (2022). Australian fire nourishes ocean phytoplankton bloom. Science of The Total Environment, 807, 150775. https://www.sciencedirect.com/science/article/pii/S0048969721058538

(39). Dai, J., Zhang, Q., Liu, J., Wen, S., Zhang, Y., He, D., & Du, Y.* (2022). Coprecipitation of organic matter, phosphate with iron: Implications for internal loadings of phosphorus in algae-dominated and macrophyte-dominated lakes. Frontiers in Environmental Science, 1062. https://www.frontiersin.org/articles/10.3389/fenvs.2022.953509/full?utm_source=dlvr.it&utm_medium=twitter

(38). Wang, K., Xiao, S., Liu, J., Li, P., He, C., Shi, Q., & He, D.* (2022). Spatial dynamics of dissolved organic matter among different segments of a large-scale reservoir in the water-level declining period. Frontiers in Environmental Science, 1187. https://www.frontiersin.org/articles/10.3389/fenvs.2022.962706/full?utm_source=dlvr.it&utm_medium=twitter


(37). Hu, T., Luo, M.*, Wünsch, U. J., He, D., Gieskes, J., Xu, Y., Fang, J., & Chen, D.* (2021). Probing sedimentary DOM in the deepest sector of Earth’s surface. Marine Chemistry, 237, 104033. https://www.sciencedirect.com/science/article/pii/S0304420321001183

(36). Wen, Z., Shang, Y., Lyu, L., Liu, G., Hou, J., He, C., Shi, Q., He, D.*, & Song, K. (2021). Sources and composition of riverine dissolved organic matter to marginal seas from mainland China. Journal of Hydrology, 603, 127152. https://www.sciencedirect.com/science/article/pii/S0022169421012026

(35). Tao, K., Xu, Y., Wang, Y., Wang, Y., & He, D.* (2021). Source, sink and preservation of organic matter from a machine learning approach of polar lipid tracers in sediments and soils from the Yellow River and Bohai Sea, eastern China. Chemical Geology, 582, 120441. https://www.sciencedirect.com/science/article/pii/S0009254121003843

(34). Wang, K., Li, P., He, C., Shi, Q., & He, D.* (2021). Density currents affect the vertical evolution of dissolved organic matter chemistry in a large tributary of the Three Gorges Reservoir during the water-level rising period. Water Research, 204, 117609. https://www.sciencedirect.com/science/article/pii/S0043135421008046

(33). Wang, K., Pang, Y., He, C., Li, P., Xiao, S., Shi, Q., & He, D.* (2021). Three Gorges Reservoir construction induced dissolved organic matter chemistry variation between the reservoir and non-reservoir areas along the Xiangxi tributary. Science of The Total Environment, 784, 147095. https://www.sciencedirect.com/science/article/pii/S0048969721021653

(32). Wang, K., Li, P., He, C., Shi, Q., & He, D.* (2021). Hydrologic heterogeneity induced variability of dissolved organic matter chemistry among tributaries of the Three Gorges Reservoir. Water Research, 201, 117358. https://www.sciencedirect.com/science/article/pii/S004313542100556X

(31). Li, P., Zhao, C., Liu, K., Xiao, X., Wang, Y., Wang, Y., & He, D.* (2021). Anthropogenic Influences on Dissolved Organic Matter in Three Coastal Bays, North China. Frontiers in Earth Science, 9, 575. https://www.frontiersin.org/articles/10.3389/feart.2021.697758/full

(30). Wang, K., Pang, Y., Gao, C., Chen, L., Jiang, X., Li, P., He, C., Shi, Q., & He, D.* (2021). Hydrological management affected dissolved organic matter chemistry and organic carbon burial in the Three Gorges Reservoir. Water Research, 199, 117195. https://www.sciencedirect.com/science/article/pii/S0043135421003936

(29). Zhao, C., Zhou, Y., Pang, Y., Zhang, Y., Huang, W., Wang, Y., & He, D.* (2021). The optical and molecular signatures of DOM under the eutrophication status in a shallow, semi-enclosed coastal bay in southeast China. Science China Earth Sciences, 64(7), 1090-1104. https://link.springer.com/article/10.1007/s11430-020-9728-4

(28). Wang, K., Pang, Y., Li, Y., He, C., Shi, Q., Wang, Y., & He, D.* (2021). Characterizing Dissolved Organic Matter Across a Riparian Soil–Water Interface: Preliminary Insights from a Molecular Level Perspective. ACS Earth and Space Chemistry, 5(5), 1102-1113. https://pubs.acs.org/doi/full/10.1021/acsearthspacechem.1c00029

(27). Pang, Y., Wang, K., Sun, Y., Zhou, Y., Yang, S., Li, Y., He, C., Shi, Q., & He, D.* (2021). Linking the unique molecular complexity of dissolved organic matter to flood period in the Yangtze River mainstream. Science of The Total Environment, 764, 142803. https://www.sciencedirect.com/science/article/pii/S0048969720363324

(26). Zhou, Y., He, D.*, He, C., Li, P., Fan, D., Wang, A., Zhang, K., Chen, B., Zhao, C., Wang, Y., Shi, Q., & Sun, Y. (2021). Spatial changes in molecular composition of dissolved organic matter in the Yangtze River Estuary: Implications for the seaward transport of estuarine DOM. Science of The Total Environment, 759, 143531. https://www.sciencedirect.com/science/article/pii/S0048969720370625

(25). He, D., Rivera-Monroy, V. H.*, Jaffé, R., & Zhao, X. (2021). Mangrove leaf species-specific isotopic signatures along a salinity and phosphorus soil fertility gradients in a subtropical estuary. Estuarine, Coastal and Shelf Science, 248, 106768. https://www.sciencedirect.com/science/article/pii/S0272771419311151

(24). Zhang, Y., Sun, Y., Liu, B., Wang, Y., Xie, W., Wang, P., Zhang, C., & He, D.* (2021). Spatiotemporal distribution and source variations of hydrocarbons in surface sediments from the Pearl River Estuary, Southern China. Journal of Soils and Sediments, 21(1), 499-511. https://link.springer.com/article/10.1007/s11368-020-02783-0


(23). He, D., Wang, K., Pang, Y., He, C., Li, P., Li, Y., Xiao, S., Shi, Q., & Sun, Y.* (2020). Hydrological management constraints on the chemistry of dissolved organic matter in the Three Gorges Reservoir. Water Research, 187, 116413. https://www.sciencedirect.com/science/article/pii/S0043135420309489

(22). Lu, Q., He, D., Pang, Y., Zhang, Y., He, C., Wang, Y., Zhang, H., Shi, Q., & Sun, Y.* (2020). Processing of dissolved organic matter from surface waters to sediment pore waters in a temperate coastal wetland. Science of The Total Environment, 742, 140491. https://www.sciencedirect.com/science/article/pii/S0048969720340134

(21). He, D.*, Ladd, S. N., Saunders, C. J., Mead, R. N., & Jaffé, R. (2020). Distribution of n-alkanes and their δ2H and δ13C values in typical plants along a terrestrial-coastal-oceanic gradient. Geochimica et Cosmochimica Acta, 281, 31-52.

(20). Liu, B., He, Y., Zhang, Y., Sun, Y., Wang, Y., & He, D.* (2020). Natural and anthropogenic organic matter cycling between coastal wetlands and rivers: a case study from Liao River Delta. Estuarine, Coastal and Shelf Science, 236, 106610. https://www.sciencedirect.com/science/article/pii/S0272771419306183


(19). Zhang, K., He, D.*, Cui, X., Fan, D., Xiao, S., & Sun, Y. (2019). Impact of anthropogenic organic matter on the distribution patterns of sediment microbial community from the Yangtze River, China. Geomicrobiology Journal, 36(10), 881-893. https://www.tandfonline.com/doi/abs/10.1080/01490451.2019.1641772

(18). He, C., Pan, Q., Li, P., Xie, W., He, D., Zhang, C., & Shi, Q.* (2019). Molecular composition and spatial distribution of dissolved organic matter (DOM) in the Pearl River Estuary, China. Environmental Chemistry, 17(3), 240-251. https://www.publish.csiro.au/en/EN19051

(17). He, D.*, He, C., Li, P., Zhang, X., Shi, Q., & Sun, Y. (2019). Optical and molecular signatures of dissolved organic matter reflect anthropogenic influence in a coastal river, Northeast China. Journal of Environmental Quality, 48(3), 603-613. https://acsess.onlinelibrary.wiley.com/doi/abs/10.2134/jeq2018.09.0330

(16). Wang, K., Pang, Y., He, C., Li, P., Xiao, S., Sun, Y., Pan, Q., Zhang, Y., Shi, Q., & He, D.* (2019). Optical and molecular signatures of dissolved organic matter in Xiangxi Bay and mainstream of Three Gorges Reservoir, China: Spatial variations and environmental implications. Science of The Total Environment, 657, 1274-1284. https://www.sciencedirect.com/science/article/pii/S0048969718349623


(15). He, D.*, Zhang, K., Cui, X., Tang, J., & Sun, Y. (2018). Spatiotemporal variability of hydrocarbons in surface sediments from an intensively human-impacted Xiaoqing River-Laizhou Bay system in the eastern China: occurrence, compositional profile and source apportionment. Science of The Total Environment, 645, 1172-1182. https://www.sciencedirect.com/science/article/pii/S0048969718326846

(14). He, D.*, Simoneit, B. R., Cloutier, J. B., & Jaffé, R. (2018). Early diagenesis of triterpenoids derived from mangroves in a subtropical estuary. Organic Geochemistry, 125, 196-211. https://www.sciencedirect.com/science/article/pii/S0146638018302080

(13). Regier, P., He, D., Saunders, C. J., Jara, B., Hansen, C., Newman, S., … & Jaffé, R.* (2018). Sheet flow effects on sediment transport in a degraded ridge‐and‐slough wetland: Insights using molecular markers. Journal of Geophysical Research: Biogeosciences, 123(10), 3124-3139. https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2018JG004648

(12). He, D.*, Zhang, K., Tang, J., Cui, X., & Sun, Y. (2018). Using fecal sterols to assess dynamics of sewage input in sediments along a human-impacted river-estuary system in eastern China. Science of the Total Environment, 636, 787-797. https://www.sciencedirect.com/science/article/pii/S0048969718314931

(11). He, D.*, Simoneit, B. R., & Jaffé, R. (2018). Environmental factors controlling the distributions of Botryococcus braunii (A, B and L) biomarkers in a subtropical freshwater wetland. Scientific Reports, 8(1), 1-9. https://www.nature.com/articles/s41598-018-26900-9


(11). He, D., Zhu, C., Zhang, K., Xiao, S., Cui, X., & Sun, Y.* (2017). Source and composition of sedimentary organic matter in the head of Three Gorges Reservoir: a multiproxy approach using δ13C, lignin phenols, and lipid biomarker analyses. Acta Geochimica, 36(3), 452-455. https://link.springer.com/article/10.1007/s11631-017-0189-8

(10). He, D.*, Ladd, S. N., Sachs, J. P., & Jaffé, R. (2017). Inverse relationship between salinity and 2H/1H fractionation in leaf wax n-alkanes from Florida mangroves. Organic Geochemistry, 110, 1-12. https://www.sciencedirect.com/science/article/pii/S0146638016302881


(9). He, D., Anderson, W. T., & Jaffé, R.* (2016). Compound specific δD and δ13C analyses as a tool for the assessment of hydrological change in a subtropical wetland. Aquatic Sciences, 78(4), 809-822. https://link.springer.com/article/10.1007/s00027-016-0473-4

(8). Rushdi, A. I., Oros, D. R., Al-Mutlaq, K. F., He, D., Medeiros, P. M.*, & Simoneit, B. R. (2016). Lipid, sterol and saccharide sources and dynamics in surface soils during an annual cycle in a temperate climate region. Applied Geochemistry, 66, 1-13. https://www.sciencedirect.com/science/article/pii/S0883292715300731

(7). He, D.*, Simoneit, B. R., Xu, Y., & Jaffé, R. (2016). Occurrence of unsaturated C25 highly branched isoprenoids (HBIs) in a freshwater wetland. Organic Geochemistry, 93, 59-67. https://www.sciencedirect.com/science/article/pii/S0146638016000073


(6). He, D.*, Simoneit, B. R., Jara, B. §, & Jaffé, R. (2015). Compositions and isotopic differences of iso-and anteiso-alkanes in black mangroves (Avicennia germinans) across a salinity gradient in a subtropical estuary. Environmental Chemistry, 13(4), 623-630. https://www.publish.csiro.au/en/en15128

(5). He, D., Simoneit, B. R., Jara, B. §, & Jaffé, R.* (2015). Gas chromatography mass spectrometry-based profiling of alkyl coumarates and ferulates in two species of cattail (Typha domingensis P., and Typha latifolia L.). Phytochemistry Letters, 13, 91-98. https://www.sciencedirect.com/science/article/pii/S187439001500107X

(4). He, D.*, Simoneit, B. R., Jara, B. §, & Jaffé, R. (2015). Occurrence and distribution of monomethylalkanes in the freshwater wetland ecosystem of the Florida Everglades. Chemosphere, 119, 258-266. https://www.sciencedirect.com/science/article/pii/S0045653514007905


(3). Sanchez-Hernandez, Y., Florentin, J. M. M.*, Melinte-Dobrinescu, M. C., He, D., & Butler, S. K. (2014). Assessing the factors controlling high sedimentation rates from the latest Barremian–earliest Aptian in the hemipelagic setting of the restricted Organyà Basin, NE Spain. Cretaceous Research, 51, 1-21. https://www.sciencedirect.com/science/article/pii/S0195667114001025

(2). He, D., Mead, R. N., Belicka, L., Pisani, O., & Jaffé, R.* (2014). Assessing source contributions to particulate organic matZZter in a subtropical estuary: a biomarker approach. Organic Geochemistry, 75, 129-139. https://www.sciencedirect.com/science/article/pii/S0146638014001740


(1). Xiang, L.X., He, D. (co-first author), Dong, W. R., Zhang, Y.W. §, Shao, J.Z.* (2010). Deep sequencing-based transcriptome profiling analysis of bacteria-challenged Lateolabrax japonicus reveals insight into the immune-relevant genes in marine fish. BMC Genomics11(1), 1-21. https://link.springer.com/article/10.1186/1471-2164-11-472